Artificial Intelligence

Lecture 6 – Propositional Calculus II

Outline

- Propositional Calculus Recap
 - Truth Tables
 - Entailment
 - Inference
- Proof Systems
 - Sound & Complete Inference
- Resolution
 - Clausal Form
 - The Resolution Rule
 - Soundness & Completeness
- Proof by Contradiction
- Resolution & Search

Propositional Calculus

- Atomic propositions are simple declarative sentences that can be *true* or *false*
- A *model* is an assignment of *true* or *false* to each atomic proposition *p*
- We can construct more complex sentences using the logical connectives: ¬ "not", ∧ "and", ∨ "or", and → "implies"

 $a \rightarrow b \equiv \neg a \lor b$ $a \leftrightarrow b \equiv a \rightarrow b \land b \rightarrow a$

• The meaning of the logical connectives is given in terms of *truth tables*

Truth Tables

• The truth tables for the four basic connectives are:

а	b	¬a	a∧b	a v b	$a \rightarrow b$
true	true	false	true	true	true
true	false	false	false	true	false
false	true	true	false	true	true
false	false	true	false	false	true

• Using truth tables we can determine the truth or falsity of *any* complex sentence in a given model

Constructing Truth Tables

- We need to enumerate all possible assignments of *true* or *false* to each atomic proposition
- Recall that with *n* propositional variables, there are 2^n cases therefore 2^n rows in the truth table, e.g., for $p \land q \rightarrow r$ there are 3 variables, and $2^3 = 8$ rows
- Each atomic proposition will be *true* in exactly half of the models, and *false* in the others
- Start with *p*, assign *true* to first half of rows, and *false* to second half
- The second variable, *q*, should be *true* in half the cases where *p* is *true* and half the cases where *p* is *false*
- And so on. . .

Example (Constructing a Truth Table)

$a \wedge b \rightarrow c (2^3 = 8 \text{ models})$

abc $a \wedge b$ $a \wedge b$ truetruetruetruetruetruefasletruetruefasletruefalse	
true true fasle true	$\land b \rightarrow c$
	true
true facle true false	fasle
	true
true false false false	true
false true true false	true
false true false false	true
false false true false	true
false false false false	true

• We can view this also as binary counting, where 0 = *true* and 1 = *false*, 000, 001, 010, 011, . . .

Entailment

- Given a notion of truth, we can say what it means for the truth of one statement to follow necessarily from the truth (or falsity) of others
- Definition (Entailment)
 - A set of sentences $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ entails a sentence β , written $\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \models \beta$ if in all models where $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ are *true*, β is also *true*
- Example (Entailment)
 - For example, a v b, ¬a |= b since in all models where a v b and ¬a are true, b is also true

Inference

- Entailment can be used to derive conclusions i.e., to carry out logical inference
- By enumerating all possible models we can determine if a sentence β follows logically from sentences { $\alpha_1, \alpha_2, \ldots, \alpha_n$ }
- This gives us a reasoning process whose conclusions are guaranteed to be *true* if the premises are *true*
- Recall that with *n* propositions, there are 2ⁿ possible models (rows in the truth table)
- Computing entailment in this way is therefore exponential in the number of propositional variables
- Time complexity is $O(2^n)$, space complexity is O(n)

Proof Systems

- Instead of trying to show semantically that $\alpha \models \beta$, a proof system instead uses rules of inference to derive valid formulas from other formulas syntactically
- For example, the rule of modus ponens mentioned in the last lecture:

$$\frac{\alpha, \ \alpha \to \beta}{\beta}$$

(α_{n} and β can be arbitrary formulas)

- A *proof* consists of a sequence of inference steps applications of inference rules that lead from the initial formulas to the formula to be derived, written $\alpha_1, \ldots, \alpha_n \models \beta$
- Proofs may still be exponential in the worst case, but they can be much shorter

Sound & Complete Inference

- Rules of inference are chosen to give a sound and complete inference procedure
- A sound inference procedure is one which derives only entailed sentences, i.e., derives *true* conclusions given *true* premises, $\alpha \models \beta$ only if $\alpha \models \beta$
- A *complete* inference procedure is one that can derive any sentence that is entailed, i.e., derives all *true* conclusions from a set of premises, $\alpha \models \beta$ if $\alpha \models \beta$
- Ideally, an inference procedure should be both sound and complete: α ⊢ β if and only if α |= β

Resolution

- Many proof systems for propositional calculus, e.g., natural deduction, tableaux methods, etc. we shall focus on *resolution*
- Resolution has a single rule of inference: the resolution rule
- Sound and (refutation) complete
- Widely used in AI theorem proving and problem solving systems
- Requires that the logical description of the problem is formulated in terms of *clauses*

Clausal Form

literal a literal is an atomic proposition or its negation, e.g., *p*, ¬*p* are literals

clause a clause is a disjunction of literals, e.g., a v b, ¬a v c, and a v b v c are all clauses

CNF a sentence expressed as a conjunction of clauses is said to be in *conjunctive normal* form (CNF), e.g., (a ∨ b) ∧ (¬a ∨ c) ∧ (a ∨ b ∨ c) is in CNF

 Any complex sentence in propositional calculus can be re-expressed in conjunctive normal form (although this might result in an exponentially larger formula in the worst case)

Converting to CNF

- 1. Eliminate \rightarrow using:
 - $(\alpha \rightarrow \beta) \equiv (\neg \alpha \lor \beta)$
- 2. Convert \wedge to \vee using distributivity:
 - $(\alpha \land \beta) \lor \gamma \equiv (\alpha \lor \gamma) \land (\beta \lor \gamma)$
- 3. Move ¬ inward so that it appears only in front of a propositional variable, using double negation elimination and De Morgan's laws:
 - $\neg \neg \alpha \equiv \alpha$
 - $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$
 - $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$

4. Collect terms:

- $(\alpha \lor \alpha) \equiv \alpha$
- $(\alpha \land \alpha) \equiv \alpha$

The Resolution Rule

• Definition (Unit Resolution)

• Definition (Resolution)

$$\frac{\alpha \lor \beta, \neg \beta \lor \gamma}{\alpha \lor \gamma}$$

- β, and ¬β are complementary literals, i.e., one is the negation of the other, α and γ are clauses
- Resolution takes two clauses and produces a new clause containing all the literals of the original clauses *except* the two complementary literals
- The derived clause is called the *resolvent*

Example (Resolution)

 From the clauses ¬a v b and a v b we can derive b by resolution:

¬a v b, a v b

b

This is clearly a valid inference, as ¬a v b, a v
 b |= b:

а	b	га	¬a v b	a v b
true	true	false	true	true
true	fasle	false	false	true
false	true	true	true	true
false	false	true	true	false

Soundness of Resolution

ανγ

- Resolution is *sound*
- We can see this by considering the literal β :
 - if β is *true* then $\neg\beta$ is *false* and hence γ must be *true*, since $\neg\beta \vee \gamma$ is *true*
 - conversely, if β is *false*, then α must be *true* since α
 v β is *true*
- Hence, $\alpha \vee \gamma$ is *true*

Completeness of Resolution

- While resolution is sound, it is not complete for arbitrary formulas
- For example, we cannot derive b V ¬b from a using resolution, even though a |= b V ¬b
- However, resolution is *refutation complete* if a set of clauses is inconsistent, it is possible to derive a contradiction

Proof by Contradiction

- Recall that α |= β if and only if α ∧ ¬β is unsatisfiable (is true in no model)
- Proving β from α by checking the unsatisfiability of α ^ ¬β is called proof by refutation or proof by contradiction
- We assume the sentence β to be false and show that this leads to a contradiction with the known formulas α
- For resolution, we add the negation of the clause we wish to derive to the premises and show that this leads to an empty clause (i.e., a contradiction)

Example (Proof by Contradiction)

- Show that $(a \lor b) \land (a \rightarrow b) \land (b \rightarrow a) \models a \land b$
- First, convert to clausal form using

$$a \rightarrow b \equiv \neg a \lor b$$

 $b \rightarrow a \equiv a \lor \neg b$

- This gives: (a ∨ b) ∧ (¬a ∨ b) ∧ (a ∨ ¬b) |= a ∧ b
- Assume a ∧ b to be false and convert to clausal form using
 ¬(a ∧ b) ≡ ¬a ∨ ¬b
- which gives (a ∨ b) ∧ (¬a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ ¬b) |= Ø

Proof by Contradiction

Clauses
 Proof

(1) a v b

(2) ¬a v b

(3) a v ¬b

(4) ¬a v ¬b

1	a v b	(1)
2	¬a v b	(2)
3	b	1, 2, by resolution
4	a v ¬b	(3)
5	а	3, 4, by resolution
6	¬a ∨ ¬b	(4)
7	٦b	5, 6, by resolution
8	Ø	3, 7, by resolution

- There has been a murder! The police are not releasing many details
- Suspects are Prof. Purple, General Horseradish, or Reverend Fields
- The murder either took place in the study or the hall
- The murder weapon was either a heavy candlestick or a revolver
- The Reverend is too old and frail to wield the candlestick
- We know that the revolver was not taken out of the study
- Only the General and the Professor had access to the study
- Prove that the reverend couldn't have committed the murder

- There has been a murder! The police are not releasing many details
- Suspects are Prof. Purple, General Horseradish, or Reverend Fields:
- Prof V General V Reverend
- The murder either took place in the study or the hall:
 - Study V Hall
- The murder weapon was either a heavy candlestick or a revolver:
- Candlestick V Revolver
- The Reverend is too old and frail to wield the candlestick:
- Candlestick $\rightarrow \neg$ Reverend
- We know that the revolver was not taken out of the study:
- Revolver \rightarrow Study
- Only the General and the Professor had access to the study:
- Study $\rightarrow \neg$ Reverend
- Prove that the reverend couldn't have committed the murder

- Goal: prove that the reverend couldn't have committed the murder
- Clauses:
 - (1) Prof V General V Reverend
 - (2) Study V Hall
 - (3) Candlestick V Revolver
 - (4) ¬Candlestick V ¬Reverend
 - (5) ¬Revolver V Study
 - (6) ¬Study V ¬Reverend
- To Prove: ¬Reverend, so add Reverend as clause 7 and derive a contradiction (empty clause)
 - (7) Reverend

• Proof

1	¬Candlestick V ¬Reverend	(4)
2	Reverend	(7)
3	¬Candlestick	1, 2, by resolution
4	Candlestick V Revolver	(3)
5	Revolver	3, 4, by resolution
6	¬Revolver V Study	(5)
7	Study	5, 6, by resolution
8	¬Study V ¬Reverend	(6)
9	¬Reverend	7, 8, by resolution
10	Ø	2, 9, by resolution

Resolution & Search

- Finding a resolution proof can be viewed as a *search problem*:
 - *states* are sets of clauses;
 - *initial state* is the initial set of clauses plus the negation of the clause to be derived;
 - goal states are a set of clauses containing the empty clause;
 - a single *operator* resolution rule which may be applicable to many pairs of clauses in a state
- The *state space* is all possible sets of clauses that can be derived from the initial state by resolution

Searching for a Proof

- Any of the systematic (uninformed or informed) search techniques can be used to search for a resolution proof
- Branching factor of the search is determined by the number of resolvable clauses/literals (possible resolvents) in a given state
- High branching factor means that theorem provers often use
 depth-first search techniques (low memory requirements)
- For example, problems where the set of clauses contains all possible combinations of *n* positive and negative literals have a O(2ⁿ) worst-case branching factor

Proofs and Solutions

- So far we have considered *entailment* if α is *true* then β must be *true*
- In many cases we also want to know what the proof is
 - e.g., planning can be formulated as a theorem proving problem steps in the proof correspond to steps in the plan; is the goal reachable from the initial state, and if so how?
- In other cases we simply want to know if a given set of formulas is satisfiable
 - e.g., checking whether a student can take two modules which might clash, the steps in the proof are not of interest
- Local search techniques can be used in these cases

Local Search & Satisfiability

- Local search algorithms such as hill-climbing and simulated annealing can be applied directly to satisfiability problems
- States are complete assignments of *true* or *false* to each atomic proposition (i.e., states are models)
- Operators simply flip the truth value of each atomic proposition (so there are *n* applicable operators in each state)
- Evaluation function counts the number of unsatisfied clauses
- State space landscape usually contains lots of local minima

Example: 8 Queens

- We can formulate the eight queens problem as a satisfiability problem
- The queen in each column must be in one of eight rows $(q_{11} \lor q_{12} \lor \ldots \lor q_{18}) \land \ldots \land (q_{81} \lor \ldots \lor q_{88})$
- Where q_{1,1} is a proposition that states that the queen in column 1 is placed in row 1, and so on
- We also need clauses which rule out particular assignments of queens to rows, e.g.,:

$$(\neg q_{1,1} \lor \neg q_{2,2}) \land \ldots \land (\neg q_{1,1} \lor \neg q_{8,8})$$

WALKSAT

- WALKSAT is a simple and effective local search algorithm for satisfiability problems
- On each iteration, the algorithm picks an unsatisfied clause and changes the truth value of one of the atomic propositions in the clause
- To pick the atomic proposition whose truth value will be flipped, it either:
 - flips whichever atomic proposition maximises the number of satisfied clauses
 - chooses an atomic proposition at random
- Halts when a satisfying assignment is found or when the number of iterations reaches a pre-specified limit

WALKSAT properties

- If WALKSAT returns a model then the input clauses are satisfiable
- If no model is found within the specified number of iterations, it is likely that the clauses are not satisfiable, but this is not a proof
- Given an infinite number of iterations, WALKSAT will eventually return a model (if one exists) - however if the clauses are unsatisfiable the algorithm will never terminate
- Local search algorithms like WALKSAT are most useful when we believe that there is a satisfying assignment
- However they can't detect unsatisfiability, which is what we need to show entailment