

Artificial Intelligence

Lecture 6 – Propositional Calculus II

Outline

● Propositional Calculus Recap
● Truth Tables

● Entailment
● Inference

● Proof Systems
● Sound & Complete Inference

● Resolution
● Clausal Form

● The Resolution Rule

● Soundness & Completeness

● Proof by Contradiction

● Resolution & Search

Propositional Calculus

● Atomic propositions are simple declarative sentences
that can be true or false

● A model is an assignment of true or false to each atomic
proposition p

● We can construct more complex sentences using the
logical connectives: ¬ “not”, “and”, “or”, and → ∧ ∨
“implies”

a → b ≡ ¬a ∨ b

a ↔ b ≡ a → b ∧ b → a
● The meaning of the logical connectives is given in terms

of truth tables

Truth Tables

● The truth tables for the four basic connectives
are:

● Using truth tables we can determine the truth or
falsity of any complex sentence in a given model

a b ¬a a ∧ b a ∨ b a → b

true true false true true true

true false false false true false

false true true false true true

false false true false false true

Constructing Truth Tables

● We need to enumerate all possible assignments of true or
false to each atomic proposition

● Recall that with n propositional variables, there are 2n cases -
therefore 2n rows in the truth table, e.g., for p ∧ q → r there
are 3 variables, and 23 = 8 rows

● Each atomic proposition will be true in exactly half of the
models, and false in the others

● Start with p, assign true to first half of rows, and false to
second half

● The second variable, q, should be true in half the cases
where p is true and half the cases where p is false

● And so on. . .

Example
(Constructing a Truth Table)

a ∧ b → c (23 = 8 models)

● We can view this also as binary counting, where 0 = true
and 1 = false, 000, 001, 010, 011, . . .

a b c a b∧ a b ∧ → c

true true true true true

true true fasle true fasle

true fasle true false true

true false false false true

false true true false true

false true false false true

false false true false true

false false false false true

Entailment

● Given a notion of truth, we can say what it means
for the truth of one statement to follow necessarily
from the truth (or falsity) of others

● Definition (Entailment)

● A set of sentences {α
1
, α

2
, . . .α

n
} entails a sentence β,

written {α
1
, α

2
, . . .α

n
} |= β if in all models where {α

1
, α

2
, .

. .α
n
} are true, β is also true

● Example (Entailment)
● For example, a ∨ b, ¬a |= b since in all models where a

 ∨ b and ¬a are true, b is also true

Inference

● Entailment can be used to derive conclusions - i.e., to
carry out logical inference

● By enumerating all possible models we can determine if a
sentence β follows logically from sentences { α

1
, α

2
, . . .α

n
}

● This gives us a reasoning process whose conclusions are
guaranteed to be true if the premises are true

● Recall that with n propositions, there are 2n possible
models (rows in the truth table)

● Computing entailment in this way is therefore exponential
in the number of propositional variables

● Time complexity is O(2n), space complexity is O(n)

Proof Systems

● Instead of trying to show semantically that α |= β, a proof system
instead uses rules of inference to derive valid formulas from other
formulas syntactically

● For example, the rule of modus ponens mentioned in the last lecture:

α, α → β

β

(α
n
 and β can be arbitrary formulas)

● A proof consists of a sequence of inference steps - applications of
inference rules - that lead from the initial formulas to the formula to be
derived, written α

1
, . . . , α

n
 ├ β

● Proofs may still be exponential in the worst case, but they can be much
shorter

Sound & Complete Inference

● Rules of inference are chosen to give a sound and
complete inference procedure

● A sound inference procedure is one which derives only
entailed sentences, i.e., derives true conclusions given
true premises, α ├ β only if α |= β

● A complete inference procedure is one that can derive any
sentence that is entailed, i.e., derives all true conclusions
from a set of premises, α ├ β if α |= β

● Ideally, an inference procedure should be both sound and
complete: α ├ β if and only if α |= β

Resolution

● Many proof systems for propositional calculus,
e.g., natural deduction, tableaux methods, etc. -
we shall focus on resolution

● Resolution has a single rule of inference: the
resolution rule

● Sound and (refutation) complete
● Widely used in AI theorem proving and problem

solving systems
● Requires that the logical description of the problem

is formulated in terms of clauses

Clausal Form

● Any complex sentence in propositional calculus can
be re-expressed in conjunctive normal form (although
this might result in an exponentially larger formula in
the worst case)

literal a literal is an atomic proposition or its
negation, e.g., p, ¬p are literals

clause a clause is a disjunction of literals, e.g.,
a ∨ b, ¬a ∨ c, and a ∨ b ∨ c are all clauses

CNF a sentence expressed as a conjunction of
clauses is said to be in conjunctive normal
form (CNF), e.g., (a ∨ b) (¬∧ a ∨ c) (∧ a ∨
b ∨ c) is in CNF

Converting to CNF

1. Eliminate → using:
● (α → β) ≡ (¬α ∨ β)

2. Convert to ∧ ∨ using distributivity:
● (α ∧ β) ∨ γ ≡ (α ∨ γ) (∧ β ∨ γ)

3. Move ¬ inward so that it appears only in front of a propositional
variable, using double negation elimination and De Morgan’s laws:

● ¬¬α ≡ α

● ¬(α ∧ β) ≡ (¬α ∨ ¬β)

● ¬(α ∨ β) ≡ (¬α ¬∧ β)

4. Collect terms:
● (α ∨ α) ≡ α

● (α ∧ α) ≡ α

The Resolution Rule

● Definition (Unit Resolution)

α ∨ β, ¬β

α

● Definition (Resolution)

α β∨ , ¬β ∨ γ

α ∨ γ

● β, and ¬β are complementary literals, i.e., one is the negation of the
other, α and γ are clauses

● Resolution takes two clauses and produces a new clause
containing all the literals of the original clauses except the two
complementary literals

● The derived clause is called the resolvent

Example (Resolution)

● From the clauses ¬a ∨ b and a ∨ b we can
derive b by resolution:

¬a ∨ b, a ∨ b

b
● This is clearly a valid inference, as ¬a ∨ b, a ∨

b |= b:
a b ¬a ¬a ∨ b a ∨ b

true true false true true

true fasle false false true

false true true true true

false false true true false

Soundness of Resolution

α β∨ , ¬β ∨ γ

α ∨ γ
● Resolution is sound
● We can see this by considering the literal β:

● if β is true then ¬β is false and hence γ must be
true, since ¬β ∨ γ is true

● conversely, if β is false, then α must be true since α
 β∨ is true

● Hence, α ∨ γ is true

Completeness of Resolution

● While resolution is sound, it is not complete for
arbitrary formulas

● For example, we cannot derive b ∨ ¬b from a
using resolution, even though a |= b ∨ ¬b

● However, resolution is refutation complete - if a
set of clauses is inconsistent, it is possible to
derive a contradiction

Proof by Contradiction

● Recall that α |= β if and only if α ¬∧ β is unsatisfiable (is
true in no model)

● Proving β from α by checking the unsatisfiability of α ^ ¬β
is called proof by refutation or proof by contradiction

● We assume the sentence β to be false and show that this
leads to a contradiction with the known formulas α

● For resolution, we add the negation of the clause we wish
to derive to the premises and show that this leads to an
empty clause (i.e., a contradiction)

Example (Proof by Contradiction)

● Show that (a ∨ b) (∧ a → b) (∧ b → a) |= a ∧ b

● First, convert to clausal form using

a → b ≡ ¬a ∨ b

b → a ≡ a ∨ ¬b

● This gives: (a ∨ b) (¬∧ a ∨ b) (∧ a ∨ ¬b) |= a ∧ b

● Assume a ∧ b to be false and convert to clausal form using

¬(a ∧ b) ≡ ¬a ∨ ¬b

● which gives (a ∨ b) (¬∧ a ∨ b) ∧ (a ∨ ¬b) (¬∧ a ∨ ¬b) |= Ø

Proof by Contradiction

● Clauses
(1) a ∨ b

(2) ¬a ∨ b

(3) a ∨ ¬b

(4) ¬a ∨ ¬b

1 a ∨ b (1)

2 ¬a ∨ b (2)

3 b 1, 2, by resolution

4 a ∨ ¬b (3)

5 a 3, 4, by resolution

6 ¬a ∨ ¬b (4)

7 ¬b 5, 6, by resolution

8 Ø 3, 7, by resolution

● Proof

Murder Mystery

● There has been a murder! The police are not releasing many details

● Suspects are Prof. Purple, General Horseradish, or Reverend Fields

● The murder either took place in the study or the hall

● The murder weapon was either a heavy candlestick or a revolver

● The Reverend is too old and frail to wield the candlestick

● We know that the revolver was not taken out of the study

● Only the General and the Professor had access to the study

● Prove that the reverend couldn’t have committed the murder

Murder Mystery

● There has been a murder! The police are not releasing many details

● Suspects are Prof. Purple, General Horseradish, or Reverend Fields:

● Prof ∨ General ∨ Reverend

● The murder either took place in the study or the hall:

● Study ∨ Hall

● The murder weapon was either a heavy candlestick or a revolver:

● Candlestick ∨ Revolver

● The Reverend is too old and frail to wield the candlestick:

● Candlestick → ¬Reverend

● We know that the revolver was not taken out of the study:

● Revolver → Study

● Only the General and the Professor had access to the study:

● Study → ¬Reverend

● Prove that the reverend couldn’t have committed the murder

Murder Mystery

● Goal: prove that the reverend couldn’t have committed the
murder

● Clauses:

(1) Prof ∨ General ∨ Reverend

(2) Study ∨ Hall

(3) Candlestick ∨ Revolver

(4) ¬Candlestick ∨ ¬Reverend

(5) ¬Revolver ∨ Study

(6) ¬Study ∨ ¬Reverend

● To Prove: ¬Reverend, so add Reverend as clause 7 and derive
a contradiction (empty clause)

(7) Reverend

Murder Mystery

● Proof

1 ¬Candlestick ∨ ¬Reverend (4)

2 Reverend (7)

3 ¬Candlestick 1, 2, by resolution

4 Candlestick ∨ Revolver (3)

5 Revolver 3, 4, by resolution

6 ¬Revolver ∨ Study (5)

7 Study 5, 6, by resolution

8 ¬Study ∨ ¬Reverend (6)

9 ¬Reverend 7, 8, by resolution

10 Ø 2, 9, by resolution

Resolution & Search

● Finding a resolution proof can be viewed as a search
problem:
● states are sets of clauses;
● initial state is the initial set of clauses plus the negation of the

clause to be derived;
● goal states are a set of clauses containing the empty clause;
● a single operator - resolution rule - which may be applicable to

many pairs of clauses in a state

● The state space is all possible sets of clauses that can
be derived from the initial state by resolution

Searching for a Proof

● Any of the systematic (uninformed or informed) search
techniques can be used to search for a resolution proof

● Branching factor of the search is determined by the number of
resolvable clauses/literals (possible resolvents) in a given state

● High branching factor means that theorem provers often use
depth-first search techniques (low memory requirements)

● For example, problems where the set of clauses contains all
possible combinations of n positive and negative literals have a
O(2n) worst-case branching factor

Proofs and Solutions

● So far we have considered entailment - if α is true then β must be true

● In many cases we also want to know what the proof is
● e.g., planning can be formulated as a theorem proving problem - steps in the

proof correspond to steps in the plan; is the goal reachable from the initial
state, and if so how?

● In other cases we simply want to know if a given set of formulas is
satisfiable

● e.g., checking whether a student can take two modules which might clash, the
steps in the proof are not of interest

● Local search techniques can be used in these cases

Local Search & Satisfiability

● Local search algorithms such as hill-climbing and simulated
annealing can be applied directly to satisfiability problems

● States are complete assignments of true or false to each atomic
proposition (i.e., states are models)

● Operators simply flip the truth value of each atomic proposition
(so there are n applicable operators in each state)

● Evaluation function counts the number of unsatisfied clauses

● State space landscape usually contains lots of local minima

Example: 8 Queens

● We can formulate the eight queens problem as a
satisfiability problem

● The queen in each column must be in one of eight rows

(q
1,1

 ∨ q
1,2

 ∨ . . . ∨ q
1,8

) . . . (∧ ∧ q
8,1

 ∨ . . . ∨ q
8,8

)

● Where q
1,1

 is a proposition that states that the queen in

column 1 is placed in row 1, and so on
● We also need clauses which rule out particular

assignments of queens to rows, e.g.,:

(¬q
1,1

 ∨ ¬q
2,2

) . . . (¬∧ ∧ q
1,1

 ∨ ¬q
8,8

)

WALKSAT

● WALKSAT is a simple and effective local search algorithm
for satisfiability problems

● On each iteration, the algorithm picks an unsatisfied clause
and changes the truth value of one of the atomic
propositions in the clause

● To pick the atomic proposition whose truth value will be
flipped, it either:
● flips whichever atomic proposition maximises the number of

satisfied clauses
● chooses an atomic proposition at random

● Halts when a satisfying assignment is found or when the
number of iterations reaches a pre-specified limit

WALKSAT properties

● If WALKSAT returns a model then the input clauses are satisfiable

● If no model is found within the specified number of iterations, it is
likely that the clauses are not satisfiable, but this is not a proof

● Given an infinite number of iterations, WALKSAT will eventually
return a model (if one exists) - however if the clauses are
unsatisfiable the algorithm will never terminate

● Local search algorithms like WALKSAT are most useful when we
believe that there is a satisfying assignment

● However they can’t detect unsatisfiability, which is what we need to
show entailment

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

